Manifolds and Group actions

Homework 3

Mandatory Exercise 1. (8 Points)

- a) Show that if $f: M \to \mathbb{R}$ is a map that is constant in a neighborhood of $p \in M$, that f is smooth in that neighborhood and that v(f) = 0 for all $v \in T_pM$.
- b) Let $f, g : M \to \mathbb{R}$ be smooth maps and $p \in M$ such that f(p) = g(p) = 0. Show that v(fg) = 0 for all $v \in T_pM$.

Mandatory Exercise 2. (4 Points)

Let $\varphi = (\varphi_1, \dots, \varphi_n) : W \to \mathbb{R}^n$ be a chart of M and $f : M \to \mathbb{R}$ a smooth function. Show that for $p \in W$

$$(df)_p = \sum_{i=1}^n \frac{\partial \hat{f}}{\partial \varphi_i} (\varphi(p)) (d\varphi_i)_p,$$

where $\hat{f} = f \circ \varphi^{-1}$ is the function in the local coordinates induced by φ .

Mandatory Exercise 3. (8 Points)

a) Consider the antipodal map $f: S^2 \to S^2$ by f(x) = -x. Let N be the north pole and S the south pole. Compute the derivative $(df)_N: T_N S^2 \to T_S S^2$.

For the rest of this exercise we view $S^2 \subset \mathbb{C} \times \mathbb{R}$. Let $n \in \mathbb{N}$ and let $g_n : S^2 \to S^2$ be defined by

$$g_n(z,t) = \begin{cases} \left(\frac{z^n}{|z|^{n-1}}, t\right) & \text{if} & z \neq 0\\ (0,t) & z = 0 \end{cases}$$

- b) Show that g_n is a smooth map.
- c) A point $(z,t) \in S^2$ is a fixed point of g_n if $g_n(p) = p$. Compute the set of fixed points of g_n .
- d) For each fixed point p of g_n , the differential is a map $(dg_n)_p : T_pS^2 \to T_pS^2$. Compute this map explicitly for all fixed points.

Suggested Exercise 1. (0 Points)

Let M be a smooth manifold and $\phi: U \to \mathbb{R}^n$ and $\psi: V \to \mathbb{R}^n$ two charts. Let V be a vector field on M. Then in local coordinates we can write that

$$V(p) = \sum_{i=1}^{n} V_i^{\phi}(p) \frac{\partial}{\partial \phi_i}$$

and

$$V(p) = \sum_{i=1}^{n} V_{i}^{\psi}(p) \frac{\partial}{\partial \psi_{i}}$$

For all $p \in U \cap V$. Work out the relation between the coefficients $V_i^{\phi}(p)$ and $V_i^{\psi}(p)$.

Suggested Exercise 2. (0 points)

Is every bijective differentiable map a diffeomorphism? (Prove this or give a counterexample.)

Suggested Exercise 3. (0 points) Let $\mathbb{CP}^n = \mathbb{C}^{n+1} \setminus \{0\}/\sim$ where $x \sim y$ iff $y = \lambda x$ for $\lambda \in \mathbb{C} \setminus \{0\}$. Consider the space

 $\gamma_n = \{ ([x], y) \in \mathbb{CP}^n \times \mathbb{C}^{n+1} | y = \lambda x \quad \text{for some} \quad \lambda \in \mathbb{C} \}$

and the projection $\pi : \gamma_n \to \mathbb{CP}^n$ given by $\pi([v], y) = [v]$. This is called the tautological line bundle. Show that the tautological line bundle is a complex line bundle.

Hand in: Monday 8nd May in the pigeonhole third floor MI