Manifolds and Group actions

Homework 3

Mandatory Exercise 1. (8 Points)
a) Show that if $f: M \rightarrow \mathbb{R}$ is a map that is constant in a neighborhood of $p \in M$, that f is smooth in that neighborhood and that $v(f)=0$ for all $v \in T_{p} M$.
b) Let $f, g: M \rightarrow \mathbb{R}$ be smooth maps and $p \in M$ such that $f(p)=g(p)=0$. Show that $v(f g)=0$ for all $v \in T_{p} M$.

Mandatory Exercise 2. (4 Points)
Let $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right): W \rightarrow \mathbb{R}^{n}$ be a chart of M and $f: M \rightarrow \mathbb{R}$ a smooth function. Show that for $p \in W$

$$
(d f)_{p}=\sum_{i=1}^{n} \frac{\partial \hat{f}}{\partial \varphi_{i}}(\varphi(p))\left(d \varphi_{i}\right)_{p}
$$

where $\hat{f}=f \circ \varphi^{-1}$ is the function in the local coordinates induced by φ.
Mandatory Exercise 3. (8 Points)
a) Consider the antipodal map $f: S^{2} \rightarrow S^{2}$ by $f(x)=-x$. Let N be the north pole and S the south pole. Compute the derivative $(d f)_{N}: T_{N} S^{2} \rightarrow T_{S} S^{2}$.

For the rest of this exercise we view $S^{2} \subset \mathbb{C} \times \mathbb{R}$. Let $n \in \mathbb{N}$ and let $g_{n}: S^{2} \rightarrow S^{2}$ be defined by

$$
g_{n}(z, t)=\left\{\begin{array}{lll}
\left(\frac{z^{n}}{|z|^{n-1}}, t\right) & \text { if } & z \neq 0 \\
(0, t) & & z=0
\end{array}\right.
$$

b) Show that g_{n} is a smooth map.
c) A point $(z, t) \in S^{2}$ is a fixed point of g_{n} if $g_{n}(p)=p$. Compute the set of fixed points of g_{n}.
d) For each fixed point p of g_{n}, the differential is a map $\left(d g_{n}\right)_{p}: T_{p} S^{2} \rightarrow T_{p} S^{2}$. Compute this map explicitely for all fixed points.

Suggested Exercise 1. (0 Points)

Let M be a smooth manifold and $\phi: U \rightarrow \mathbb{R}^{n}$ and $\psi: V \rightarrow \mathbb{R}^{n}$ two charts. Let V be a vector field on M. Then in local coordinates we can write that

$$
V(p)=\sum_{i=1}^{n} V_{i}^{\phi}(p) \frac{\partial}{\partial \phi_{i}}
$$

and

$$
V(p)=\sum_{i=1}^{n} V_{i}^{\psi}(p) \frac{\partial}{\partial \psi_{i}}
$$

For all $p \in U \cap V$. Work out the relation between the coefficients $V_{i}^{\phi}(p)$ and $V_{i}^{\psi}(p)$.

Suggested Exercise 2. (0 points)
Is every bijective differentiable map a diffeomorphism? (Prove this or give a counterexample.)

Suggested Exercise 3. (0 points)
Let $\mathbb{C P}^{n}=\mathbb{C}^{n+1} \backslash\{0\} / \sim$ where $x \sim y$ iff $y=\lambda x$ for $\lambda \in \mathbb{C} \backslash\{0\}$. Consider the space

$$
\gamma_{n}=\left\{([x], y) \in \mathbb{C P}^{n} \times \mathbb{C}^{n+1} \mid y=\lambda x \quad \text { for some } \quad \lambda \in \mathbb{C}\right\}
$$

and the projection $\pi: \gamma_{n} \rightarrow \mathbb{C} \mathbb{P}^{n}$ given by $\pi([v], y)=[v]$. This is called the tautological line bundle. Show that the tautological line bundle is a complex line bundle.

